MI CE TOF0 prototypes

M. Bonesini
INFN Milano
Outline

- Introduction
- Considerations on scint. thickness
- Considerations for PMT choice
- Tests for R4998 conventional PMTs
- Conclusions
Problems for high resolution scintillator based TOF ($\sigma_t < 100$ ps)

- σ_{pl} dominated by geometrical dimensions $\sim \sqrt{(L/N_{pe})}$
- $\sigma_{scint} \sim 50-60$ ps (mainly connected with produced number of γ’s fast and scintillator characteristics, such as risetime) choice BC404
- σ_{PMT} dominated by PMT TTS (160 ps for R4998)

$$\sigma_t = \sqrt{\frac{\sigma_{scint}^2 + \sigma_{PMT}^2 + \sigma_{pl}^2}{N_{pe}}} + \sigma_{ele}$$

- Additional problems in harsh environments:
 1. B field (shielding?)
 2. High incoming particle rates
The environment

The beamline design puts harder and harder requests on TOF0 station

- Higher and higher particle rates (now 2.3-2.8 MHz, it was ~1 MHz at beginning)
- Request for thinner and thinner scintillators (but now 2” total thickness for TOF0 seems OK)
- Good late news from Kevin: it seems that B is very small (it was ~150 gauss)
TRD SEPT04 Layout

- ISIS Beam
- Proton Absorber
- TOF0
- TOF1
- Diffuser
- Iron Shield
- Ckov1
- TOF2
- Ckov2
- Cal

6/4/05 VC meeting
Summary of Rates (Sept04 from Tom Roberts)

<table>
<thead>
<tr>
<th>Description</th>
<th>LAHET</th>
<th>Geant4</th>
<th>MARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOF0</td>
<td>2355</td>
<td>2693</td>
<td>2834</td>
</tr>
<tr>
<td>TOF1</td>
<td>462</td>
<td>529</td>
<td>557</td>
</tr>
<tr>
<td>Tracker1</td>
<td>422</td>
<td>482</td>
<td>507</td>
</tr>
<tr>
<td>Tracker2</td>
<td>284</td>
<td>324</td>
<td>342</td>
</tr>
<tr>
<td>TOF2</td>
<td>281</td>
<td>321</td>
<td>338</td>
</tr>
<tr>
<td>Good (\mu^+)</td>
<td>277</td>
<td>316</td>
<td>333</td>
</tr>
</tbody>
</table>

Values are events per millisecond of Good Target; absorbers empty, no RF.

Good \(\mu^+\) = TOF0 & TOF1 & Tracker1 & Tracker2 & TOF2 & TOF1(\(\mu^+\)) & TOF2(\(\mu^+\))

Major changes from before:

- 2 in. total thickness of TOF0 and TOF1 \(\Rightarrow\) ~20% reduction in Good \(\mu^+\)
- ~50% larger target acceptance \(\Rightarrow\) ~10% increase in TOF0 singles, ~1% in Good \(\mu^+\).
Summary of Rates (Jun 04 from T. Roberts)

<table>
<thead>
<tr>
<th>Description</th>
<th>LAHET</th>
<th>MARS</th>
<th>Geant4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOF0</td>
<td>2173</td>
<td>2676</td>
<td>2548</td>
</tr>
<tr>
<td>TOF1</td>
<td>513</td>
<td>631</td>
<td>601</td>
</tr>
<tr>
<td>Tracker1</td>
<td>462</td>
<td>569</td>
<td>542</td>
</tr>
<tr>
<td>Tracker2</td>
<td>343</td>
<td>442</td>
<td>402</td>
</tr>
<tr>
<td>TOF2</td>
<td>339</td>
<td>418</td>
<td>398</td>
</tr>
<tr>
<td>Good μ^+</td>
<td>336</td>
<td>414</td>
<td>394</td>
</tr>
</tbody>
</table>

Values are events per millisecond of Good Target and good RF.

Good $\mu^+ = \text{TargetDet} \& \text{TOF0} \& \text{TOF1} \& \text{Tracker1} \& \text{Tracker2} \& \text{TOF2} \& \text{TOF1}(\mu^+) \& \text{TOF2}(\mu^+)$
TOF0

TRD Size 480x480

6/4/05 VC meeting
TOF0 X/Y singles projection

With 4 cm width slabs max counter rate seems < 400-500 KHz. R4998 maybe OK with booster or active divider circuit (studies under way)
Good muons X/Y projections at TOF0 (from T. Roberts)

Question for Tom: X/Y projections for good particles seem not fully compatible with XY scatter plot (X projection bet -150, +150 instead of -240, +240 mm)
Considerations on scintillator thickness

- Shown time resolution is FWHM vs scintillator thickness L
- Green/red lines from BC408; blue line is BC404 (faster)
- Data from MEG tests at BTF

Actual choice: $\sigma \sim 60$ ps

Thin solution: $\sigma \sim 100$ ps if all goes right (perfect detector calibration, ...) I will retain thick solution (1” slabs)
Single scintillator counter layout

- BC404 scintillator (compromise between cost and performances: decay time 1.8 ns, att length ~ 160 cm, max emission at 408 nm well matched with R4998 max response at 420 nm)
- $L=480$ mm to avoid particles hitting lightguides
- $W=40$ mm to reduce rate with a sensible counter number
- $T=1''$ to have good timing resolution
Mechanics for TOF0

View of X/Y plane, some counters may be missing along X: eg 12 vertical counters, 6 horizontal counters.
TOF0 support structure
Considerations for TOF0 PMT choice

1. Rate capability (up to some MHz)
2. Good timing properties (TTS)
3. Sustain magnetic field (we now assume <50 gauss for TOF0)

In house soilenoid built for tests up to 50 gauss (M.Bonesini, F.Strati INFN Milano).
PMT test setup

Laser source to simulate MIP signal (about 300 p.e.) :

• fast AVTECH pulser AVO-9A-C (risetime 200 ps, width 0.4-4 ns, repetition rate 1KHz-1MHz) with NDHV310APC Nichia violet laser diode (~400 nm, 60 mW) NEW!!
• fast PLP-10 laser on loan from Hamamatsu Italia

Laser sync out triggers VME based acquisition (TDC + QADC) // MCA SILENA system

Home made solenoid test magnet (B up to 50 gauss, d~20 cm, L~50 cm) see later for details
Rate capabilities of PMTs

To have a linear signal the mean average anode current (100 μA for R4998) must not be exceeded -> damage to dynodes ... shorter PMT lifetime

This gives a theoretical rate capability of:

267 KHZ with R4998

BUT !!! Divider can be modified for R4998 (going up to 1.67 MHZ) with booster or active divider
Solenoid test magnet (B up to 50 gauss)
Used laser light source (PLP 10)

Light source: Hamamatsu fast laser (λ≈405 nm, FWHM 60 ps, 250 mW peak power) PLP-10

Optical system: x,y,z flexure movement to inject light into a CERAM/OPTEC multimode fiber (spread 14 ps/m)

PMT under test

Laser light Signal ~ 300 p.e. to reproduce a MIP as measured with an OPHIR Laser powermeter
Used laser light source (Avtech)

- Light source: Nichia violet diode (\(\lambda\approx408\) nm, FWHM 4-4 ns, 60 mW peak power)
- Optical system: x,y,z flexure movement to inject light into a CERAM/OPTEC multimode fiber (spread 14 ps/m)
- Avtech pulser

This system well suited to simulate scintillator signals
R4998 PMT rate studies

R4998 with modified divider circuit: booster for last dynodes

<table>
<thead>
<tr>
<th>Structure</th>
<th>R 4998</th>
<th>R 5505</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stages</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Gain</td>
<td>5.7×10^6</td>
<td>5×10^5 B=0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8×10^4 B=1 T</td>
</tr>
<tr>
<td>Rise Time</td>
<td>0.7 ns</td>
<td>1.5 ns</td>
</tr>
<tr>
<td>Transit Time</td>
<td>10 ns</td>
<td>5.6 ns</td>
</tr>
<tr>
<td>Transit Time</td>
<td>Jitter</td>
<td>0.16 ns</td>
</tr>
</tbody>
</table>

Nominal: up to 1.5 MHz

6/4/05 VC meeting
One specimen on loan in July 2004 for tests
R4998 tests

- Some tests done last year (see later)
- more tests now
- Most probable choice: R4998 in H6533mod assembly
 - Active divider (instead of booster)
 - Mod cables out (RG58 instead of RG174, standard HV cable)
 - Mu metal shielding
Gain in magnetic field for R4998
Timing properties of R4998 in B field

LASA tests 07/04 z H6533 mod booster + mu metal

- ◯ pos 1 – along Y
- △ pos 1 – along x
- ◊ pos 3 – 50 days to Z

6/4/05 VC meeting
Rate effects studies for R4998

- done with available R4998 with modified divider from Hamamatsu (booster on last dynodes)
- Light signal corresponds to ~ 300 p.e.
Plan of future work

- tests of R4998 with test solenoid up to 50 gauss
- tests (for TOF1/TOF2) fine-mesh PMTs at LASA
- Begin to think about rate problem for QADC/TDC (tests? Help from Emilio?)
- Follow up of TOF0 prototype
Conclusions

- the idea is to have ~18 fully equipped scintillator counters (BC404 + R4998 PMTs as RH6533MOD assembly) to assemble a complete TOF0 station:
 - 12 counters along Y/6 counters along X funded by UNIGE
- Open problems:
 - R4998 can be equipped with a booster or an active divider (same performances according to Hamamatsu engineers, but easier to handle)
 - Choice of QADC/TDC: tests must be done