<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-01-09</td>
<td>2006-01-26</td>
<td>P326</td>
<td>8</td>
<td>18</td>
<td>0.0</td>
<td>500.0</td>
<td>500.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>Main user</td>
</tr>
<tr>
<td>2006-01-19</td>
<td>2006-01-19</td>
<td>OPERA</td>
<td>2</td>
<td>1</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td>there is small possibility to change the date 19th -> 20th. in that case, I will tell as soon as possible, before 14th Sat.</td>
<td>Main user</td>
</tr>
<tr>
<td>2006-01-27</td>
<td>2006-02-02</td>
<td>MEG</td>
<td>6</td>
<td>7</td>
<td>0.0</td>
<td>500.0</td>
<td>500.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>Main user</td>
</tr>
<tr>
<td>2006-02-03</td>
<td>2006-02-19</td>
<td>PASSRA</td>
<td>8</td>
<td>17</td>
<td>0.0</td>
<td>500.0</td>
<td>500.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>Main user</td>
</tr>
<tr>
<td>2006-02-20</td>
<td>2006-03-05</td>
<td>LHCB-RICH</td>
<td>24</td>
<td>14</td>
<td>0.0</td>
<td>500.0</td>
<td>500.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>Main user</td>
</tr>
<tr>
<td>2006-02-23</td>
<td>2006-02-23</td>
<td>OPERA</td>
<td>1</td>
<td>1</td>
<td>1000.0</td>
<td>500.0</td>
<td>500.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td>Expose 1 sample of nuclear emulsions to integrate 1000 electrons/cm^2 on the largest possible surface. The best would be to go down in intensity in order to control better the overall int</td>
<td>Main user</td>
</tr>
<tr>
<td>2006-03-06</td>
<td>2006-04-02</td>
<td>RAP</td>
<td>6</td>
<td>28</td>
<td>0.0</td>
<td>500.0</td>
<td>500.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>Cancelled</td>
</tr>
<tr>
<td>2006-03-27</td>
<td>2006-04-02</td>
<td>MEG</td>
<td>6</td>
<td>7</td>
<td>0.0</td>
<td>500.0</td>
<td>500.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>Main user</td>
</tr>
<tr>
<td>2006-03-29</td>
<td>2006-03-29</td>
<td>OPERA</td>
<td>8</td>
<td>1</td>
<td>1000.0</td>
<td>500.0</td>
<td>500.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td>irradiation of electrons with a density of 1000/mm^2</td>
<td>Main user</td>
</tr>
<tr>
<td>2006-04-04</td>
<td>2006-04-19</td>
<td>BTF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DAFNE MANTENANCE SHUTDOWN</td>
<td>Main user</td>
</tr>
<tr>
<td>2006-06-01</td>
<td>2006-06-25</td>
<td>RAP</td>
<td>6</td>
<td>25</td>
<td>0.0</td>
<td>500.0</td>
<td>500.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>Main user</td>
</tr>
<tr>
<td>2006-06-26</td>
<td>2006-07-02</td>
<td>MEG</td>
<td>6</td>
<td>7</td>
<td>0.0</td>
<td>500.0</td>
<td>500.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>Main user</td>
</tr>
<tr>
<td>2006-07-03</td>
<td>2006-07-11</td>
<td>P326</td>
<td>6</td>
<td>9</td>
<td>0.0</td>
<td>500.0</td>
<td>500.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>Main user</td>
</tr>
<tr>
<td>2006-07-12</td>
<td>2006-07-20</td>
<td>MICE</td>
<td>24</td>
<td>9</td>
<td>0.0</td>
<td>50.0</td>
<td>350.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1.e+6</td>
<td>The system to be tested will include two detectors: - a couple of scintillator counters for tof measurements - a couple of EmCal modules (KLOE like) for visible energy measurements</td>
<td>Main user</td>
</tr>
<tr>
<td>2006-07-21</td>
<td>2006-07-30</td>
<td>MIMOSA</td>
<td>8</td>
<td>10</td>
<td>0.0</td>
<td>25.0</td>
<td>750.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td>We would like, for logistic reasons, to have a beam time contiguos with the MICE group request to arrange the technical support from the Rome3 technicians.</td>
<td>Main user</td>
</tr>
<tr>
<td>2006-07-31</td>
<td>2006-08-06</td>
<td>LAZIO</td>
<td>24</td>
<td>7</td>
<td>0.0</td>
<td>500.0</td>
<td>500.0</td>
<td>Electron</td>
<td>1.0</td>
<td>1000.0</td>
<td></td>
<td>Main user</td>
</tr>
</tbody>
</table>

Note:
- **Min. Mult:** Minimum Multiplicity
- **Max. Mult:** Maximum Multiplicity
- **Min. Energy:** Minimum Energy
- **Max. Energy:** Maximum Energy
- **Particle:** Type of elementary particle
- **Note:** Additional notes or remarks
- **Priority:** User priority status (Main user, Cancelled, etc.)