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Introduction

• Previous fits and predictions were made assuming:

– guesses as to relative sizes of beamlet, phase spread and thermal diffusion

– that the the βFN in the pillbox was the same as that determined in the
open cavity

– relative, rather than quantitative, heated temperatures of bombarded sur-
face, & without defining the damage mechanism

• This analysis (a step forward, but needing further work):

– Assumes damage arises from cyclical heating as observed by SLAC

– Works backward from the damaging strains to determine beamlet currents

– Includes PARMELA determination of beamlet size vs. current

– Determines βFN from these currents, for assumed asperity source areas:
better than using the FN β = 183 determined for the open cavity that
operated at higher gradients

2



Data used for this study
Fit is nto guide the eye
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E = B−.42

• Look at parameters for E= 19 (MV/m) B=1.7 (T)
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Energy on arrival at other side
From CAVEL simulation
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• For E = 19 MV/m Ee = 0.5 MV
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I vs. Gradient
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• Note that the power n is not independent of E

• it is this that allows βFN to be determined
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Beamlet radius

• Space charge blows the beam up near its source

• Magnetic field transports and focuses

• Beamlet radius from PARMELA: Diktys Talk

R(µm) = 22.6 ×
I0.33(µA)

B(T )

For I=105 µm, B=1.7 T: R=61.6 (µ m)
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Phase dependent rms sweep: dxy
From CAVEL simulations
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• Shift in x comes from shift in B
direction arising from vector sum
of rf B(azymuth=x) and external
Bz
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dxy dependence on B and E
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• For E=19 MV/m B=1.7 T n=10.7: dx = 322 (µm)

• With added diffusion length and spot size: dx = 331 (µm)
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Depositions vs B for Cu
B= 1 CuDeposition
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• Diffusion plays little role at low B

• Only significant for B> 2 T
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Material parameters used

• Pulse length τ = 20 (µsec)

Cu Be Be Al Al
Temp (K) 273 273 80 273 80
ρ (gm/cc) 8.96 1.83 1.83 2.7 2.7
Cp (J/gm) 0.385 1.83 0.10 0.871 0.367
K (Watts/cm) 4.01 2.18 8.7 2.37 7.28
α (10−5/deg) 1.65 1.03 0.06 2.21 0.92

D=0.01
√

Kτ/ρCp (µ m) 48.2 35.9 309 44.8 119.8

E deposition vs. depth
c.f. Diktys talk

Preliminary treatment of thermal diffusion

• Heat deposits are Gaussian in x and y with σs from sums in quadrature of:

– beam dimensions from space charge simulation

– In x only: rms sweep from phases

– Thermal diffusion = D=0.01
√

Kτ/ρCp (µ m)

The later contribution may be a poor approximation
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Current from local temperature rise

• τ = 20 µ s dE/dx = 35 MV/cm D= 48.2 (µ m)

• R= 61.6 (µ m) With added diffusion length and spot size: dy=78 (µ m)

• dx= 325 (µ m) With added diffusion length and spot size: dx=335 (µ m)

∆T =

(

2

π

)

τ I (dE/dx) D

π dxy R D Cp ρ
= 50 deg

Strain = α ∆T = 8.24 10−4

• This ignores T and position changes in Cp, ok at 273, poor at 80

• To obtain 50 deg we needed I= 105 µA
implying β=398 for source 30 nm, or 512 for 9 nm Are such high βFNs
reasonable when 183 measured in the open cavity ?

– Correct for lower achieved gradients in pillbox: 52/40 × 184 = 239

– Worst emitter cf. average emitter: 1.66 × 236 = 398

– Or worst emitter cf. average emitter: 2.1 × 236 = 512

– 1.66 seems not unreasonable

– 2.1 a bit high, but could be true for the damaged cavity
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E vs B for Cu and Be at iris
Having picked source radius and βFN , we can now determine the E that will

give the same damaging strains at other magnetic fields
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• Shape not strongly dependent on choice of areas and associated βFN

• This fit, unlike earlier fits, uses observed fields at one B, but not the slope

• Worst fit at high B where crude treatment of thermal diffusion may be reason
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E vs B for Cu and Be on axis
On axis there is no phase pependent sweep in x, and the beam is round and

smaller requiring less E for damage
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• But if Cu sides are tested in magnetic fields, breakdown should be worse

• The gradients for Be are above the data, consistent with observed lack of
breakdown on axis with Be windows
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Material and temperature effects on Beam sizes
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• Diffusion plays modest role
in Cu and warm Al

• Diffusion plays little role for warm Be

• But a strong role in cold Al
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E vs B for Cu, Be, Al, Be cold, Al cold
G

ra
d

(M
V

/m
)

Field (T)

Warning: the results for cold Al and Be are preliminary
because they ignore changing Cp during heating
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• Main effect of lowering temperature is to increase thermal diffusion

• So its effect is only seen at high B

• Cold Al is significantly better than Cu, but not nearly as good as Be
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A Be test cavity design
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Conclusion

• SLAC has shown that soft copper is damaged when thermally cycled to ap-
proximately 50 degrees, corresponding to strains of 0.824 10−3

• We assume that damage in cavities operating in a magnetic field are induced
by space charge emitted electron beamlets that are focused by the field

• PARMELA simulations have given space charge induced beamlet radii

• Data from Los Alamos give quantitative energy depositions vs. depth

• CAVEL simulations give spread of electron deposition location with initial
phase for locations at finite radii

• Using a crude model for thermal diffusion then gives energy deposition volume
and the required currents to yield damage

• Observed damage at one magnetic field give local field enhancement β for a
given source area

• With no further assumptions, we can predict the field dependence of damage
thresholds on axis and at finite radii for Cu, Be, Al and cold Al
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Conclusion (2)

• This analysis indicates βFN=398 for a source radius of 30 nm, or higher for
smaller source areas This is higher than that measured in the open cavity,
but is not unreasonable for a worst asperity in the damaged cavity

• The beamlet radii for Cu and Al are relatively large, and greater than the
diffusion length for fields less than 1.7 T

• The beamlet radii for Be are even larger, and greater than the diffusion length
for all fields

• Be is much better than Cu because energy loss is low

• Al and cold Al are better than Cu, but by much less than for Be

• Remaining tasks are:

– Gain access to a code to provide 3 dimensional energy depositions

– Develop a 3 dimensional thermal diffusion code to replace the current crude
model

– Integrate temperature rise with changing Cp(T)

– Make predictions for 201 MHz
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