New fit to breakdown vs. mag field

MCTF Palmer, Rick Fernow, Juan Gallardo, Diktys Stratakis (BNL) Derun Li, Steve Virostek, Mike Zisman (LBNL) Don Summers (Mississippi)

RF Workshop Fermilab

7/7/09

- 1. Introduction
- 2. Model
- 3. Fit to Cu pillbox data
- 4. Predictions for Be, AI and cold AI
- 5. A Be test cavity
- 6. Conclusion

Introduction

- Previous fits and predictions were made assuming:
 - $-\operatorname{guesses}$ as to relative sizes of beamlet, phase spread and thermal diffusion
 - —that the the β_{FN} in the pillbox was the same as that determined in the open cavity
 - relative, rather than quantitative, heated temperatures of bombarded surface, & without defining the damage mechanism
- This analysis (a step forward, but needing further work):
 - $-\operatorname{Assumes}$ damage arises from cyclical heating as observed by SLAC
 - $-\operatorname{Works}$ backward from the damaging strains to determine beamlet currents
 - Includes PARMELA determination of beamlet size vs. current
 - Determines β_{FN} from these currents, for assumed asperity source areas: better than using the FN $\beta = 183$ determined for the open cavity that operated at higher gradients

Data used for this study

Fit is nto guide the eye

 \bullet Look at parameters for ${\cal E}{=}$ 19 $\,$ (MV/m) $\,$ B=1.7 $\,$ (T) $\,$

Energy on arrival at other side From CAVEL simulation

 \bullet For ${\cal E}=19$ MV/m $E_e=0.5$ MV

I vs. Gradient

- Note that the power n is not independent of $\mathcal E$
- it is this that allows β_{FN} to be determined

Beamlet radius

- Space charge blows the beam up near its source
- Magnetic field transports and focuses
- Beamlet radius from PARMELA: Diktys Talk

$$R(\mu m) = 22.6 \times \frac{I^{0.33}(\mu A)}{B(T)}$$

For I=105 μ m, B=1.7 T: R=61.6 (μ m)

 Shift in x comes from shift in B direction arising from vector sum of rf B(azymuth=x) and external Bz

dxy dependence on B and \mathcal{E}

$$dxy = 0.031 \frac{\mathcal{E}}{\mathrm{B}} \sqrt{\frac{10}{n}}$$

• For $\mathcal{E}=19 \text{ MV/m}$ B=1.7 T n=10.7: $dx = 322 \ (\mu m)$

• With added diffusion length and spot size: $dx = 331 \ (\mu m)$

- Diffusion plays little role at low B
- \bullet Only significant for B> 2 T

Material parameters used

• Pulse length $\tau = 20 \; (\mu \text{sec})$

	Cu	Be	Be	Al	AI
Temp (K)	273	273	80	273	80
ho (gm/cc)	8.96	1.83	1.83	2.7	2.7
$C_p (J/gm)$	0.385	1.83	0.10	0.871	0.367
K (Watts/cm)	4.01	2.18	8.7	2.37	7.28
lpha (10 ⁻⁵ /deg)	1.65	1.03	0.06	2.21	0.92
D=0.01 $\sqrt{K\tau/\rho C_p}$ (μ m)	48.2	35.9	309	44.8	119.8

E deposition vs. depth

c.f. Diktys talk

Preliminary treatment of thermal diffusion

- Heat deposits are Gaussian in x and y with σ s from sums in quadrature of:
 - beam dimensions from space charge simulation
 - $-\ln x$ only: rms sweep from phases
 - Thermal diffusion = D=0.01 $\sqrt{K \tau /
 ho C_p}$ (μ m)

The later contribution may be a poor approximation

Current from local temperature rise

• $\tau = 20 \ \mu \text{ s}$ dE/dx = 35 MV/cm D= 48.2 ($\mu \text{ m}$)

- R= 61.6 (μ m) With added diffusion length and spot size: dy=78 (μ m)
- dx= 325 (μ m) With added diffusion length and spot size: dx=335 (μ m)

$$\Delta T = \left(\frac{2}{\pi}\right) \frac{\tau I (dE/dx) D}{\pi dxy R D Cp \rho} = 50 \text{ deg}$$

Strain = $\alpha \Delta T = 8.24 \ 10^{-4}$

- This ignores T and position changes in Cp, ok at 273, poor at 80
- To obtain 50 deg we needed I= 105 μ A implying β =398 for source 30 nm, or 512 for 9 nm Are such high β_{FN} s reasonable when 183 measured in the open cavity ?
 - Correct for lower achieved gradients in pillbox: $52/40 \times 184 = 239$
 - Worst emitter cf. average emitter: $1.66 \times 236 = 398$
 - Or worst emitter cf. average emitter: 2.1 imes 236 = 512
 - -1.66 seems not unreasonable
 - -2.1 a bit high, but could be true for the damaged cavity

\mathcal{E} vs B for Cu and Be at iris

Having picked source radius and β_{FN} , we can now determine the \mathcal{E} that will give the same damaging strains at other magnetic fields

• Shape not strongly dependent on choice of areas and associated β_{FN}

- This fit, unlike earlier fits, uses observed fields at one B, but not the slope
- Worst fit at high B where crude treatment of thermal diffusion may be reason

\mathcal{E} vs B for Cu and Be on axis

On axis there is no phase pependent sweep in x, and the beam is round and smaller requiring less \mathcal{E} for damage

- But if Cu sides are tested in magnetic fields, breakdown should be worse
- The gradients for Be are above the data, consistent with observed lack of breakdown on axis with Be windows

Material and temperature effects on Beam sizes

14

- Diffusion plays modest role in Cu and warm Al
- Diffusion plays little role for warm
- But a strong role in cold Al

- Main effect of lowering temperature is to increase thermal diffusion
- So its effect is only seen at high B
- Cold AI is significantly better than Cu, but not nearly as good as Be

A Be test cavity design

Conclusion

- SLAC has shown that soft copper is damaged when thermally cycled to approximately 50 degrees, corresponding to strains of 0.824 10^{-3}
- We assume that damage in cavities operating in a magnetic field are induced by space charge emitted electron beamlets that are focused by the field
- PARMELA simulations have given space charge induced beamlet radii
- Data from Los Alamos give quantitative energy depositions vs. depth
- CAVEL simulations give spread of electron deposition location with initial phase for locations at finite radii
- Using a crude model for thermal diffusion then gives energy deposition volume and the required currents to yield damage
- \bullet Observed damage at one magnetic field give local field enhancement β for a given source area
- With no further assumptions, we can predict the field dependence of damage thresholds on axis and at finite radii for Cu, Be, AI and cold AI

Conclusion (2)

- This analysis indicates β_{FN} =398 for a source radius of 30 nm, or higher for smaller source areas This is higher than that measured in the open cavity, but is not unreasonable for a worst asperity in the damaged cavity
- The beamlet radii for Cu and Al are relatively large, and greater than the diffusion length for fields less than 1.7 T
- The beamlet radii for Be are even larger, and greater than the diffusion length for all fields
- Be is much better than Cu because energy loss is low
- Al and cold Al are better than Cu, but by much less than for Be

• Remaining tasks are:

- Gain access to a code to provide 3 dimensional energy depositions
- Develop a 3 dimensional thermal diffusion code to replace the current crude model
- Integrate temperature rise with changing Cp(T)
- $-\operatorname{Make}$ predictions for 201 MHz