Target Design Status

Lara Howlett
University of Sheffield
Overview

- Current prototype and status of testing
- Design of full prototype
- Concerns about radiation levels, vacuum conditions and heating of target
- Schedule
Reminder of specs

- Target travel of 40mm
- Positioning accuracy < 0.5mm
- Frequency 1-3 Hz (higher if possible) on demand
- Maximum proton rate 1.4×10^{12}
- The mechanism must not disturb the vacuum
Proposed Target Scheme

Schematic design

Array of coils

Magnet(s)

Position measurement

Diaphragm spring

Linear Drive
Pre-prototype

- A pre-prototype was produced late last year
- This prototype was never supposed to work to specs it was a tool to understanding the heating of coils etc
- However this prototype has been used by the Sheffield group to gain experience in:
 - Electronics
 - Mounting the system with diaphragm spring
 - Position readout
Electronics

• The current pre-prototype has 6 coils
• The coils are activated in pairs
• A timing circuit has been developed to control the actuation
• This uses MOSFET h-bridges to switch the coils
Electronics – Current Scheme
Electronics – Future Plans

- Work has now started on a circuit suitable for the full prototype
- This will be controlled by a microprocessor allowing:
 - Variable timing in the coils
 - Feedback from position sensing
- The Full prototype will need much higher voltages and currents than currently used and this will require several modifications
Diaphragm Springs

- Diaphragm springs are required to hold the shuttle on axis
- Springs have been designed using an initial design provided by Tom Bradshaw
- FEA have been done to check the stresses on the spring
- The springs have been cut by wire erosion
Position sensing

- Position sensing is provided by an inductive linear measurement system
- The system consists of an etched metal scale and readhead containing sensors
- The metal scale has 8cm spaced index markers to allow absolute position to be obtained
- The sensor has been mounted on the pre-prototype and first results obtained
DAQ for position sensor

- The encoder signal is fed into PCI-QUAD 04 board
- Libraries are provided with the board in C++ and Visual Basic
- Software has been developed in visual basic to:
 - Look at information on screen for monitoring purposes
 - Write to file for later analysis
Fully mounted pre-prototype

Position sensor

Coil Assembly

Diaphragm Springs

Water Cooling

Target Design Status

Berkeley Meeting, February 2005
First results

Position is oscillating once the shuttle reaches the correct value

Frequency = 0.3Hz
First Results

- Frequency = 6.4 Hz
- Much smoother motion
- Gaps when sensor passes marker index.
- Missing counts?
Full Prototype design

- Design of the new prototype is almost complete
- This has new magnet layout to give better flux linkage
- Will use higher current to give bigger forces and acceleration
- More coils in three phase to give better control
Radiation concerns

• Concerns on how radiation levels will affect the magnets and electronics have previously been expressed

• To this end a first simulation has been done with FLUKA to try to assess what we can expect radiation levels to be around the target

• The simulation consists of 800 MeV protons on a 10x10x1mm3 titanium target
Simulation results

Grays/year
What does this mean

• A brief scan of the literature reveals that:
 – NdFeB magnets are unaffected by radiation levels of 1.2×10^5 Gray
 – Electronics start to show affects at around 10^2 Grays

• Results still need to be carefully analysed and cross checked, but it looks like this is an issue that needs careful study and thought
Heating concerns

- Concerns have also been expressed about heating both
 - Heating of the target from proton collisions
 - Heating of the coils from high currents
- These issues need to be studied further
Vacuum concerns

- Concerns have also been expressed about whether all the materials used are suitable for use in a vacuum
- There is also of the issue of how the water cooling should be implemented
- It is vital that we get the input of ISIS engineers before the design progresses too far
Target Design Status

Berkeley Meeting, February 2005
Conclusions

- Progress has been made in development of electronics and readout technology
- First full prototype is expected at the end of February
- Problems with radiation levels, heating and vacuum conditions remain a concern and should be studied carefully
- The involvement of ISIS engineers is needed for the design